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Abstract 

Here we present a new flexible modeling tool for simulating the distribution of tracers in the modern 

ocean. A Working Environment for Simulating Ocean Movement and Elemental cycling within an Ocean 

Circulation Inverse Model, the AWESOME OCIM, is a transport matrix model (TMM) which is 

specifically designed to be easy, accessible, and intuitive, even for scientists without prior modeling 

experience. The AWESOME OCIM comes with a variety of selectable biogeochemical functions, 

including sources (atmospheric dust, hydrothermal vents, and seafloor nepheloid layers), internal cycling 

processes (biological uptake, remineralization, and scavenging), and sinks (radioactive decay and burial 

of particles in the sediments). A wide variety of elements can be simulated through different combinations 

of this suite of processes. We anticipate that the AWESOME OCIM will be a valuable tool for 

interpreting transect data from ocean surveys, particularly the trace-elements and isotopes distributions 

mapped by the ongoing GEOTRACES program. This manuscript provides an introduction to the 

philosophical, mathematical, and functional basis of the AWESOME OCIM. 
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1. Introduction 

1.1 Models of varying complexity 

The use of simple box models has a long and important history in chemical oceanography 

(Broecker and Peng, 1982; Sigman and Boyle, 2000; Toggweiler et al., 2003b; Toggweiler et al., 2003a; 

Sarmiento and Gruber, 2006).  The simplest versions of such models might contain just one box for the 

surface ocean and another for the deep ocean (Tyrrell, 1999), whereas other applications require 

additional boxes to distinguish between ocean basins and watermasses (e.g. Toggweiler, 1999), or 

geochemically distinct regions like anoxic zones (e.g. Deutsch et al., 2004). These simple models are 

typically used to explore the biogeochemical cycling of just a few tracers at a time, such as carbon or 

major nutrients. Their simplicity means that they can be easily built and manipulated by an individual 

researcher, and such models have often appeared in the oceanographic literature as a small component of 

manuscripts which also present new data or new theories (e.g. Van Geen et al., 1991; Parekh et al., 2004; 

Hunter and Boyd, 2007; Yang et al., 2014; Takano et al., 2014, among many others).  

At the other end of the ‘complexity spectrum’ lie global Earth System Models (ESMs) which 

include realistic representations of coupled ocean-atmosphere circulation over ~105-106 boxes, complex 

ecosystem interactions, and the cycling of carbon, physical tracers, and multiple nutrients. The physical 

ocean circulation component of such models is a general circulation model, or GCM, which solves a 

discretized approximation of the primitive equations for fluid transport. The relative complexity of these 

models tends to lead to different modes of scientific interaction and use. Specifically, ESMs are typically 

run and maintained by large groups of scientists, each of whom is responsible for just a small part of the 

overall modeling effort. 

Regardless of their complexity, all numerical models have advantages compared to conceptual or 

qualitative models including: 1) The ability to quantitatively test hypotheses, for example the ability to 

validate or reject hypotheses by showing whether they can produce a good match to observations given 

realistic constraints, and 2) to make quantitative predictions, for example to quantify fluxes of carbon or 

nutrients in the modern ocean or to predict how fluxes might have been different in the past or future 

ocean. 

 

1.1 Transport matrix models (TMMs) and the ocean circulation inverse model (OCIM) 

Over the past decade, transport matrix models (TMMs) have emerged as a new class of models 

which share characteristics both of simple box models and more complex GCMs. TMMs can simulate the 

biogeochemistry of tracers on a global scale, with realistic ocean circulation and relatively high spatial 

resolution (~105 grid cells) (Fig. 1). Yet their use of linear algebra techniques means that they achieve an 

extraordinary increase in computational speed. A wide variety of factors influence the computational time 

necessary to solve a GCM, including spatial and temporal resolution, the number of variables being 

transported in the model, whether the physical and biogeochemical processes are coupled in a single 

model run, and the “spin-up” time necessary for a model to reach equilibrium, but it is common for 

GCMs to require weeks to months of computation time to converge on steady-state tracer distributions. In 

contrast, using a TMM one can solve for steady-state tracer distributions in several seconds to minutes, 

depending on the number of tracers and the resolution of the TMM. 

TMMs describe the circulation of the ocean in the form of a matrix which specifies the transfer of 

water between grid cells of the model. Given that each grid cell only exchanges directly with a few 

neighboring cells, the transport matrix is very sparse (most elements are zero), making it easier to store 

and manipulate. Biogeochemical processes can similarly be described in matrix-vector notation, using 



equations that prescribe transfer of the tracer from one model grid cell to another, or a source or sink of 

the tracer within each grid cell. A TMM-formulated biogeochemical model thus consists of a single 

matrix equation, which can be solved at steady-state using linear algebra techniques, which are much 

more computationally efficient than the numerical integration methods employed for GCMs. 

Early applications of TMMs converted the circulation of GCMs into a matrix form to exploit the 

computational efficiency of matrix vector products and matrix inverses of sparse matrices (Primeau, 

2003; Khatiwala et al., 2005; Primeau, 2005). Similar techniques have now been applied to extract 

transport matrices from a wide array of ocean GCMs including the Parallel Ocean Program version 2 

(POP2) model that has been used in the NCAR Community Earth System Model (Bardin et al., 2014), the 

ECCO version 2 ocean state estimate model (Zanna et al., 2019), the ocean component of the University 

of Victoria Earth System Model (Kvale et al., 2017) and the ACCESS ocean model (Chamberlain et al., 

2019). Enabled by TMM techniques, scientists have addressed a wide array of scientific problems such as 

constraining the global cycling of carbon and nutrients (e.g. Kwon and Primeau, 2006; Khatiwala et al., 

2009; Weber and Deutsch, 2010; Wang et al., 2019). 

Compared to using circulations from GCMs, a better representation of the influence of oceans 

circulation on tracer distributions can be achieved by incorporating information about the distribution of 

physical and biogeochemical tracers in the ocean (e.g. Schlitzer, 1993; Schlitzer, 2007). The Ocean 

Circulation Inverse Model (OCIM) is one such technique, which starts with a circulation based on a 

steady-state near-geostrophic approximation, and then optimizes for additional non-geostrophic terms to 

best match the distribution of tracers such as potential temperature, salinity, radiocarbon (14C), and CFCs 

(DeVries and Primeau, 2011; DeVries, 2014). This optimization requires many thousands (~103-104) of 

iterations in order to determine a circulation which best matches tracer distributions to corresponding 

observations. This large number of simulations is accomplished by casting the circulation in TMM form, 

enabling the use of fast matrix algebra solvers. Because it is constrained by data, the OCIM provides a 

more realistic representation of the influence of ocean circulation on tracer distributions than free-running 

GCMs. 

The OCIM is a circulation model, not a biogeochemistry model. But it can be easily implemented 

as the circulation component of an ocean biogeochemistry model, and has been used for numerous 

applications in chemical oceanography including being used to quantify ocean CO2 uptake (DeVries, 

2014; DeVries et al., 2017), reveal spatial variability in phytoplankton carbon to nutrient uptake ratios 

(DeVries and Deutsch, 2014; Teng et al., 2014), and constrain the export and fate of organic carbon 

(Weber et al., 2016; Roshan and DeVries, 2017; DeVries and Weber, 2017).  The OCIM has also been 

used to constrain the global cycling and distribution of a wide range of elements including phosphorous 

(Primeau et al., 2013; DeVries et al., 2014), silicon (Holzer et al., 2014; DeVries et al., 2017), nitrogen 

(DeVries et al., 2012; Weber and Deutsch, 2012; DeVries et al., 2013; Weber and Deutsch, 2014; Wang 

et al., 2019), and zinc (Roshan et al., 2018; Weber et al., 2018). 

 

1.2 Practical considerations for using OCIM 

Besides its computational efficiency, OCIM has several other features that facilitate its use by non-

experts. A few of these features are: 

1. OCIM is lightweight and memory-efficient. The OCIM takes up only several MB of disk space and 

RAM. This contrasts with typical GCMs which require GB of storage and memory space. 

2. The native language of OCIM is MATLAB, which is commonly used throughout the scientific 

community, and easily learned by those without prior programming experience (though it is a 



proprietary language and thus the AO is not fully open-source). This contrasts with typical GCMs that 

are written in Fortran or other expert-level programming languages. 

3. OCIM can be run on a laptop computer. This contrasts with typical GCMs that must be run on 

supercomputers or large computer clusters, requiring significant IT infrastructure. 

All of these features lower the barrier of entry for scientists without previous modeling experience or the 

support of a large modeling group or computational facility. 

The computational efficiency of the OCIM also lends it to different modeling approaches 

compared to GCMs. Simulations of biogeochemical tracers in a GCM may take weeks to reach steady-

state, so there is a limit to the number of different model formulations which can be tested. This results in 

the tendency to equip a model with every process that might affect the tracer distribution before it is run. 

While this approach has the advantage of including a wide variety of potentially important mechanisms, it 

can make it difficult to derive mechanistic insight into which processes are most important in explaining 

observed phenomena. 

The efficiency of the OCIM allows multiple model formulations to be tested, making it more 

suitable for hypothesis testing and model optimization than a traditional GCM. A typical approach with 

the OCIM is to begin with a bare-minimum representation of biogeochemical processes, adding additional 

processes only when they are necessary to correct for systematic model-data discrepancies. This process 

allows one to distinguish the processes which are fundamental to the global distribution of a tracer, from 

other processes which may occur in the ocean, but are not first-order controls on global distributions. 

Because the OCIM circulation is data-constrained, one can with reasonable assurance ascribe model-data 

discrepancies to missing biogeochemical processes, rather than inaccurate physical transport. Similarly, 

because of OCIM’s computational efficiency, one can set a range of possible values for several different 

model parameters, and then search through thousands of different models in order to determine the 

combination of parameters that best matches observations. A recent example of this approach used the 

OCIM to search for surface ocean nitrogen uptake and N2-fixation rates that provide the best match to 

observed nutrient distributions (e.g. Wang et al., 2019). 

The OCIM also has limitations compared to GCMs. Perhaps most importantly, the OCIM does 

not include any temporal variability in circulation, including seasonal variability. Instead, it simulates an 

annual mean circulation constrained by the observational data. Another limitation is that the spatial 

resolution of the OCIM is relatively coarse: at 2o horizontal resolution with 24 vertical levels it is roughly 

half the resolution of typical global ocean biogeochemistry models that are based on GCMs. Finally, 

OCIM has been developed to match the modern climatological mean ocean circulation. In contrast to 

GCMs, OCIM cannot be used to predict the response of ocean circulation to changes in climate forcing. 

All of these considerations therefore limit the OCIM to use for exploring and predicting the steady-state 

distribution of tracers in the modern ocean at large spatial scales. 

No model is perfect, a sentiment nicely summarized by Gerard Roe as “People don’t understand 

the Earth, but they want to, so they build a model, and then they have two things they don’t understand” 

(Wohlforth, 2004). Like any model, the OCIM has both strengths and weaknesses. Still, we believe that 

the relative simplicity of the OCIM makes it ideal for use by non-expert modelers, and that adding OCIM 

modeling to the ‘toolkit’ used by observational scientists can lead to scientific advances. 

 

1.3 The AWESOME OCIM 

Here we describe a new model, A Working Environment for Simulating Ocean Movement and Elemental 

cycling within the Ocean Circulation Inverse Model; the AWESOME OCIM, or the AO for short. This 



model is intended to put the tools of the OCIM into the hands of observationalists and others with little or 

no prior experience in ocean modeling. Ultimately, we hope that this can provide an alternative to the 

simplified box models or 1-d models often now used for interpretation in observation-focused papers. In 

order to achieve this goal, we focus on three specific criteria: 

1) Code is written as transparently as possible, so that users can more easily understand the 

code they are running and more easily modify that code for new purposes. Variable names 

are meant to be easily understood and interpreted, extensive commenting is used to describe the 

purpose of each line of code, and all mathematical operations are performed as intuitively as 

possible, even at the expense of less succinct code and sometimes slightly longer computational 

times. 

2) The model is written in a modular format, so that users can easily add new biogeochemical 

processes. Each biogeochemical process is handled in a separate Matlab function. This way, 

users can model an element which is affected by several biogeochemical processes by running 

several functions in series. New biogeochemical processes can be incorporated into the model in 

a similar fashion, and shared between users as self-contained functions. 

3) The model comes pre-loaded with observational datasets and model output. In order to 

streamline work with the AO, the model comes pre-loaded with a variety of observational 

datasets (e.g. 2017 GEOTRACES Intermediate Data Product and 2009 World Ocean Atlas) 

stored in the AO model grid, as well as important output from other models (e.g. predictions of 

global ocean productivity and dust input). 

In this manuscript we describe the mathematical basis of the AO and work through a few examples of 

how the model might be used in research. An appendix provides additional detail, briefly discussing each 

of the biogeochemical processes and datasets which come with the pre-packaged model. An explicit goal 

of the AO is to make global ocean modeling tools available to scientists with little prior modeling 

experience. This manuscript is therefore written with that audience in mind, prioritizing detailed and 

simple explanations which will be useful for scientists without much prior experience in linear algebra 

mathematics, ocean modeling, or coding. The code is available at 

https://github.com/hengdiliang/AWESOME-OCIM-v1.1 and 

http://www.mtel.rocks/mtel/awesomeOCIM.html, and in the supplementary materials. 

 

2. Mathematical basis of the AO 

The AO represents biogeochemical processes as a set of linear equations, and solves for the 

steady-state distribution of a tracer impacted by those processes. The AO uses simple matrix division in 

order to solve the model, as opposed to an iterative linear algebra technique used by some other OCIM-

biogeochemical models, and thus every process which affects the tracer of interest within each model grid 

cell must either be zero-order (an input or removal of the tracer which is not dependent on the 

concentration of the tracer) or first-order (an input or removal which is directly proportional to the 

concentration of the tracer). First-order processes may depend either on the concentration of an element 

within that grid cell, such as loss by radioactive decay, or on the concentration the element within another 

grid cell, such as the circulation input of an element from a neighboring cell or the input of an element 

due to remineralization of biogenic particles formed in the surface ocean.  

The linear algebra techniques used to construct such a model can be easily appreciated by 

considering a 4-box model of the ocean (Fig. 2). One of these boxes does not contain ocean, reflecting 

topography of the seafloor, so that the model is described by three coupled equations to represent the 



three ocean boxes. When considering only water transport, the change in the concentration of a 

hypothetical element E within any given box is equal to the mass transfer rate of water coming in from 

neighboring boxes (T) multiplied by the concentration of element E within that water (E), minus the 

amount of water leaving the box multiplied by the concentration of element E within that box (assuming 

that all boxes have the same volume). For the 3-box model, where box 3 is neglected because it does not 

contain ocean, the three water transport equations are therefore: 
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The assumption of steady-state is that  is equal to zero, and by convention the zero-order terms (those 
��

not multiplied by a concentration E) are moved to the right-hand side of the equations to yield: 
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This set of three linear equations can then be represented in matrix-vector form, by defining matrix A as 

the set of nine constants from the left-hand-sides of the equations, and vector b as the three right-hand-

side constants: 

 

(7) 

 

(8) 

 

As written above, there would be no single solution to these equations which contain three unknowns (E1, 

E2, and E3) but only two independent equations (because any of them can be determined from the other 

two). However, as shown in Figure 2, the model becomes constrained as additional first-order terms are 

incorporated into A and zero-order terms (i.e. fixed sources and sinks) are incorporated into b to represent 

biogeochemical processes. Having incorporated all additional processes into A and b, the full physical-

biogeochemical system can then be solved by matrix inversion: 
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where e is a vector containing all the values of E in each box: 



 

(10) 

 

 

The AO code follows a similar approach, with the main program calling individual functions 

which each add a representation of an individual process to A and b, then solving for the distribution of 

the hypothetical element E using matrix division. In this fashion the AO includes functions to represent a 

wide variety of biogeochemical processes, including sources such as dust and hydrothermal vents, 

internal cycling processes such as scavenging and biological uptake and remineralization, and sinks such 

as radioactive decay and sedimentary burial. For a more detailed description of the biogeochemical 

functions and datasets which are included with the AO, some of which are used in the examples below, 

see the Appendix. 

 

 

3. Examples 

 Three examples discussed below illustrate different ways in which the AO can be used in 

scientific research, with a focus on functions that are easy to implement with minimal modifications of 

the AO code as it is originally released. These examples demonstrate ways that “off-the-shelf” AO 

simulations might be incorporated for simple hypothesis testing into data-oriented papers, highlighting 

ways in which certain processes either can or cannot explain the observations (e.g. John et al 2018 using a 

preliminary version of the AO). Alternatively, more extensive work with the AO might form the basis of 

a modeling-focused manuscript aimed at synthesizing a global view of an element cycle, in which the 

user might develop new functions to address specific aspects of that element’s biogeochemical cycle. 

 

3.1 Using the AO to model simple processes 

 Even without modifying the AO to create a realistic global model of an element, there can still be 

value in comparing data to a simple model of one or two processes. For example, a plume of Fe-rich 

waters has been observed emanating from the Peru margin on the US GEOTRACES GP15 transect (Fig. 

3). The most obvious source of Fe on the margin would be reducing sediments, yet the depth of the plume 

is much deeper than the oxygen minimum (John et al., 2018). Alternatively, it could be that the Fe plume 

is created by non-reductive dissolution of Fe from oxic sediments underneath the oxygen minimum, for 

example in nepheloid layers. To quickly test this second idea, a model can be run with a source of Fe in 

nepheloid layers and a sink through first-order removal (modeled using the code for radioactive decay) 

with a residence time of 50 years (consistent with the timescale at which dissolved Fe is lost by particle 

scavenging in the oceans) (Tagliabue et al., 2016). Using the AO’s graphical user interface (GUI), a 

model like this can be set up with just a few clicks and run in under a minute. The choice of the absolute 

rate at which tracer is added from nepheloid layers does not matter here, since the model is only seeking 

to reproduce the spatial distribution of nepheloid layer input, not the absolute magnitude. 

The GUI can then be used to look at model output and compare it to data. First, the GUI can be 

used to plot Fe concentrations from the 2017 GEOTRACES Intermediate Data Product along the GP15 

transect, showing the plume of Fe near the continental margin. Then model output can be plotted 

similarly, showing that nepheloid layer input does not produce a similar plume (Fig 3). The failure of the 

model to reproduce data suggests that nepheloid layer input, at least as parameterized in the AO (see 



Supplemental Section for description of nepheloid layer input), cannot be responsible for the observed Fe 

plume on the GP15 transect. A similar approach was recently used by John et al. (2018) to argue that 

some additional process was necessary to explain the Fe plume, such as release of isotopically light Fe 

from reducing sediments and subsequent reversible scavenging onto sinking POC. The input of Fe from 

reducing sediments cannot be modeled with the AO in its off-the-shelf form, but could be easily 

incorporated into the AO by writing a new function to describe this input in a new b matrix. 

 

3.2 Using boundary conditions to model regional processes 

 Boundary conditions can be used to build regional models of element cycling, or to identify 

regionally important processes which are missing from existing models. Global models have an important 

place in research, as they encourage study of the processes which dominate the global-scale cycling of 

elements, and yield globally-consistent tracer distributions. In theory, if one were interested in local-scale 

processes, the local distribution could be compared to output from a good global model. However, 

because no model is perfect, the local data will inevitably be compared to an imperfect global model, 

making it more difficult to disentangle the effect of local processes from inaccuracies propagated from 

outside the region of interest. Boundary conditions provide a means to better isolate a particular region of 

study. 

 Boundary conditions work by setting the concentration of an element equal to observations along 

the edges of the region to be studied. By setting up a model with only boundary conditions, and no other 

biogeochemical processes, one would be able to determine the ‘circulation-only’ distribution of an 

element within the region, which is transported in from the specified boundaries of that region. For 

example, the GA03 and GA10 GEOTRACES cruises transected east-west in the North Atlantic and South 

Atlantic, respectively, enclosing the tropical Atlantic between these two boundaries. By imposing the 

boundary conditions of the observed Fe concentrations along both transects, we can infer what would be 

the distribution of Fe in the tropical Atlantic if there were no sources or sinks of Fe in the tropics (Fig. 4). 

This model output can then be compared to data from the GA02 transect which crossed north-south 

through the tropical Atlantic. By doing so, we see that the boundary condition model predicts much 

higher Fe concentrations in the deep ocean than were observed, and lower concentrations at equatorial 

mid-depths (500-1500 m). We can therefore ascribe the differences to loss by scavenging in the deep 

ocean, and input to the mid-depths of the tropical ocean due to dust deposition and/or shelf sources, with 

redistribution over depth by biological uptake and regeneration. 

 

3.3 Modeling isotopes with the AO 

 By keeping a few simple rules in mind, it is possible to use the AO to predict the distribution of 

stable isotopes. Because all processes in the AO are linear, it is not necessary to account for the relative 

abundance of the various isotopes (e.g. the fact that N is 99.6% 14N and 0.4% 15N). Instead, one can first 

run a version of the model which simulates the average behavior of all isotopes in order to obtain the 

tracer concentration distribution throughout the ocean, and then run a separate model just to represent the 

behavior of a heavier isotope. The stable isotope ratio for each grid cell can then be calculated as: 

 

 �����/���� � ����� � 1� ⋅ 1000     (11) �
 

where e is the concentration of your element determined from the base model and eiso is the concentration 

determined from the isotope model. 



 Using this approach, the effect of different isotope ratios between tracer sources and kinetic 

isotope effects during tracer sinks and cycling processes can be tested and visualized using the AO. The 

isotopic composition of source processes can be represented by changing the supply rate of heavy isotope 

tracer to the model, relative to the standard supply rate. For example, to represent a hydrothermal input 

with a δheavy/light of -1 ‰, you would supply the bulk tracer at a rate specified by Rhydrothermal (see Appendix 

for details of how the AO represents these processes), and the heavy isotope tracer at a rate of R ∙hydrothermal  

0.999. Kinetic isotope effects during first-order processes are similarly modeled by changing the rate 

constant in the isotope model. For example, a -5 ‰ isotope effect during biological uptake could be 

represented by specifying a value of � for biological uptake in the function bioalpha, and then running 

a version of the model for a heavy isotope with � ∙ 0.995. We have demonstrated this approach by 

simulating the distribution of a hypothetical nutrient-like tracer that has a 5 ‰ isotopic fractionation 

during assimilation (Fig. 5). 

 

4. Conclusions 

Directly “off-the-shelf”, the AWESOME OCIM provides a simple interface for users to test how 

various biogeochemical processes influence large-scale tracer distributions in a model with realistic 

global circulation. We hope that such tools provide users with a way to develop better intuition for 

oceanographic processes, aiding data interpretation. We further hope that the simplicity of the model will 

make it appropriate for use in classes, both as an introduction to oceanographic processes and as an 

introduction to ocean modeling. 

We anticipate that most research applications of the AO will require further modification by the 

user. Specifically, we imagine that the biogeochemical functions included here will be a good starting 

point for modeling most elements in the ocean, but that every element will be affected by a few processes 

which are not considered here, and thus new code will have to be written to reflect that biogeochemistry. 

The modular way in which the A and b matrices are constructed from a series of functions representing 

individual process means that new processes can be easily be included. Similarly, this modularity means 

that functions describing new biogeochemical processes can be shared between users, and combined with 

existing biogeochemical functions. Indeed, the range of studies which could be undertaken with the AO 

ranges far beyond just the “elements” discussed here, and could include biological molecules such as 

proteins and DNA, dissolved gasses, inorganic quantities such as alkalinity, or other constituents which 

occur in seawater. 

It should be noted that the AO is a specific application of the OCIM, and as such is separate and 

distinct from the OCIM. The OCIM is a data-constrained ocean circulation model, which can be 

implemented in any ocean biogeochemical model of unlimited complexity. The OCIM is actively 

maintained, developed, and improved, and new versions are released periodically at 

https://tdevries.eri.ucsb.edu/models-and-data-products/. The AO is a library of MATLAB codes that run 

linear biogeochemical models, using a transport matrix derived from a particular version of the OCIM 

(DeVries, 2014) to ensure high-fidelity tracer transport. The AO could easily be run with transport 

matrices derived from other models, and a major goal of future versions of the AO is the incorporation of 

new circulations, particularly those reflecting the past and future ocean states. By doing this, we hope that 

the AO can become a tool for paleoceanographic and geological research, and for climate science. In this 

way we hope that the AO can become a tool not only for modern oceanographic research but also for 

exploration of past and future Earth conditions. 
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Appendix I: User guide for the Awesome OCIM  

 

Appendix I, Section 1. Biogeochemical processes available with the AO 

To facilitate ease of use, the AO comes with a number of biogeochemical processes already incorporated. 

These are all stored in the srcsnk folder, and they include sources of elements to the ocean such as dust 

fluxes and hydrothermal input, sinks from the ocean such as radioactive decay, and internal cycling 

processes such as biological uptake, regeneration, and scavenging. Each process is reviewed briefly here, 

while a more complete description of how they operate can be found in the comments embedded within 

the MATLAB code for each function. 

 

bioredfield represents the biological uptake and remineralization of an element with a fixed 

stoichiometry compared to P, sometimes referred to as a ‘Redfield ratio’.  The uptake rate of P in the 

surface ocean (Pup) is taken from a separate model of the global P cycle (Weber et al., 2018). The uptake 

of element E (Eup; µmole m-3 y-1) is then given by: 

 

  !" � #!" ⋅ $        (12) 

 

Where R is the stoichiometric ratio of element E compared to P in biological particles. It should be noted 

that this formulation doesn’t have any cap on the uptake of element E, and thus it is possible to create 

regions where E is less than zero in the surface ocean. 

The bioredfield function also allows the user to specify the remineralization length scale 

based on the Martin curve by specifying the b value for remineralization where the flux (F) at any depth 

(z) is determined by the flux at the compensation depth (Fc) and depth of the compensation depth (zc) by: 
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In the AO, zc is the top of the third layer (around 73 m), because AO assumes productivity without 

remineralization in the top two layers. 

Even for the deepest ocean, some portion of the tracer will not be remineralized in the water 

column and will therefore be left over to sink out of the bottom grid cell. There is then a choice about 

whether to return that E back into the dissolved phase, a process analogous to sedimentary 

remineralization of remaining organic material, enabled by setting sedremin.on to 1, or if that E 

should be removed to from the model in a process akin to burial in the sediments by setting 

sedremin.on to 0. 

  

bioalpha represents the biological uptake and remineralization of an element. It is based on the 

concept of alpha (�), a relative uptake rate constant for an element compared to phosphate (Huested et al., 



1981). The uptake rate of phosphate (Pup) is used to calculate a first-order rate constant for P uptake (kP) 

in each surface-ocean grid cell (the top two layers of the model) based on: 
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where P is the phosphate concentration in that grid cell. The uptake rate for element E (E ; µmole m-3 -
up  y 1) 

is then determined using the relationship: 
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and 
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Thus, for example, if 20% of the phosphate in a given grid-cell was taken up annually, and �for element 

E was 2, then ~40% of element E would be taken up from that grid cell annually. Water column and 

sedimentary remineralization are performed in a similar fashion as with bioredfield. 

One advantage of bioalpha is that it reflects an experimental observation about the uptake of 

many trace-metals by phytoplankton including Zn, Cd, Mn, and Co, that metal:P ratios increase roughly 

in proportion to the concentration of the element in media (Sunda, 2012, and references therein). A 

second advantage is that absolute uptake rates decrease as the concentration of E decreases, so that 

concentrations of E do not go below zero. 

 

boundcon sets a boundary condition based on one or more GEOTRACES transects from the 2017 

Intermediate Data Product (Schlitzer et al., 2018). With these boundary conditions, regardless of the 

concentration of tracer which enters a grid cell, the model will output water with the concentration 

specified by the boundary condition. The mechanism by which this is achieved is to specify an 

extraordinarily large source of your tracer into each boundary condition grid cell, paired with an 

extraordinarily large first-order loss of tracer from that grid cell. The concentration within that grid cell is 

then set by the balance between the large source and the large sink, and is nearly unaffected by any 

additional gain or loss of tracer due to circulation and other biogeochemical processes. By default, the 

first order rate constant for loss is 106 y-1, and the source of tracer is c⋅106 y-1, where c is the specified 

concentration of the tracer within the boundary condition grid cell. 

  

conc sets the mean ocean concentration of an element. It works by creating an extraordinarily small 

source of E into every box, and then establishing an extraordinarily small first-order loss of E. By default, 

the first-order rate constant for loss is 10-6 y-1, so the mean ocean concentration of the element will be set 

by imposing a source of c⋅10-6 y-1 where c is additional concentration flux added to each box each year. 

This approach works because the timescale at which E is added and removed is much longer than the 

mixing timescale of the ocean (106 years, versus a mixing timescale of ~103 years), so that the impact on 

the concentration of E in any single box is overwhelmed by other processes and is therefore unnoticeable.  

conc should only be used in the case that there are no other external sources or sinks of E to the 

ocean (i.e. a closed system). For example, a model which includes only transport and reversible 



scavenging, and in which all scavenged E which reaches the bottom box is released back into the 

dissolved phase (sedremin turned on) is a closed system. In an open-system model the mean concentration 

is determined by the magnitude of the external sources and sinks, and conc should not be used. For 

example, a model which included hydrothermal input and burial of scavenged E, the global ocean 

concentration would be set by the balance of the magnitudes of the hydrothermal source and the burial 

sink, and conc should not be used. 

 

decay removes element E from the ocean according a first-order loss such as radioactive decay, where 

the first-order rate constant for loss is calculated by setting the half-life of the element. 

 

dust adds an element according to the predicted input of seven different kinds of aerosol deposition 

(mineral, fire, fossil fuel, biofuel, seasalt, plants, and volcanic; Fig. 6). These maps are stored in the 

structure AEROSOLDEP as seven 91x180x24 matrices which describe aerosol inputs in units of mg m-2 

y-1. For the mineral dust, seasalt, and plant sources, the mass of the aerosols is the total mass.  For the fire, 

fossil fuel and biofuel aerosols, the mass represents the black carbon contribution from these sources. For 

volcanic aerosols it is the sulfur contribution. The input of your element of interest is then specified by 

dust.R (µmole m-3 y-1 E / mg m-3 y-1 aerosol), the ratio of your element to the aerosol input, by: 

 

,-./01 � 2.,3. $ ⋅ 51/-,-6     (17) 

 

where aerosol is the deposition of aerosol to the surface layer ocean. The maps of aerosol input are 3-

dimensional model output from a variety of types of aerosol, contributed by the lab of Natalie Mahowald, 

as described in Brahney et al. (2015) and Chien et al. (2016).   

 

hydrothermal adds E to the ocean according to predictions of submarine hydrothermal 3He input 

stored in HEFLUX.mat (Fig. 7). Helium fluxes are based on seafloor spreading rates, as originally 

outlined by Farley et al. (1995) and further modified in an OCIM framework by allowing for regionally 

variable differences in the relationship between spreading rate and 3He (Holzer et al., 2017). The 

HEFLUX data already accounts for the volume of the grid cell into which hydrothermal fluids are 

injected, so that the input of element E is given by: 
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where hydrothermal.K (µmole m-3 y-1 E / µmole m-3 y-1 He) is the globally constant molar ratio of E to 
3He. 

 

nepheloid adds element E in proportion to predicted nepheloid layer particle concentrations (Fig. 8). 

Nepheloid layers are found at the bottom of the oceans where particles are resuspended from the 

sediments into the water column and/or advected laterally. Several factors contribute to the formation of 

nepheloid layers including bottom currents, sediment type, regional topography accelerating flows 

locally, and the dissipation of ocean energy in the form of decaying eddies, internal waves and tides. We 

provide two different ways to parameterize nepheloid layer input. 

 One estimate of the global distribution of nepheloid layers is based on over 8800 observations of 

particle concentrations made either with the Lamont Thorndike Nephelometer or with transmissometers 



attached to CTDs (Gardner et al., 2018b; Gardner et al., 2018a). We use the integrated concentration of 

particles over the entire nepheloid layer (µg cm-2) to determine the total particle concentration in each 

column of the model grid, and then apportion that particle concentration by depth based on the calculated 

fraction of bottom sediments ocurring in each grid cell (ao.SEAFLOOR). Finally, the areal concentration 

of particles (µg m-2), is converted to a volume concentration (µg m-3) by dividing by the height of each 

grid cell. Particle concentration data mapped in Gardner et al. (2018b) were interpolated with an 8°search 

radius, but for this model we interpolated the data globally with a 25° search radius and second-degree 

smoothing using an inverse distance method. Data coverage in some parts of the ocean such as the 

Western North Atlantic is quite good, while other parts of the ocean such as the Arctic, Southern Ocean, 

and mid-ocean basins is less complete. Even this wide search radius did not allow for interpolation in 

many parts of the Arctic, and thus we assume no nepheloid layers in those regions. 

 An alternative estimate of global nepheloid layers depends on a relationship between surface 

eddy kinetic energy (EKE) and particle density in near-bottom nepheloid layers. Surface EKE is based on 

a 25-year record of sea-surface height ending in 2018, in units of cm2 s-2 (Taburet et al., 2019). Eddy 

kinetic energy (cm-2 s-1) is converted into the total areal delivery of eddy energy to each column (m2 cm-2 

s-1) in the model grid by multiplying by the column area, and then converted to the volume concentration 

of eddy energy ((m2 cm-2 s-1) m-3) by dividing by the volume of each grid cell. This volume concentration 

of energy is converted to a nepheloid particle concentration by taking into account the fractional amount 

of bottom sediments in each grid cell (ao.SEAFLOOR). Please note that any models using satellite EKE 

are requested to include the acknowledgement ‘This study has been conducted using E.U. Copernicus 

Marine Service Information’. The relationship between surface and deep EKE and nepheloid layer 

intensity has been explored in depth by Gardner et al. (2017; 2018a; 2018b). Briefly, there is a 

relationship in much of the ocean, with clear exceptions beneath the Kuroshio current and near the 

equator where EKE is elevated, yet there are no observations of high nepheloid layer particle 

concentrations (Fig. 8). 

 Nepheloid layer intensities are given in units of µg m-3 for the observations and (m2 cm-2 s-1) m-3 

for EKE stored in the AO as NEPH.OBS and NEPH.EKE, respectively. The input of element E is then 

given by: 
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where TYPE is either OBS or EKE, and K is the ratio of E concentration input per nepheloid intensity. 

 

nonrevscavPOC removes E from the ocean in direct proportion to the POC concentration in each grid 

cell. POC concentrations were determined in a separate model of global nutrient cycling (Weber et al., 

2018), so they are higher under upwelling regions and they decrease with depth according to the Martin 

curve. The loss of E is determined as: 
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where nonrevscavPOC.K is the fraction of E lost per year per mmole m-3 of POC, and POC is the 

concentration of POC. 

 



revscav  assumes reversible scavenging onto particles with a uniform distribution throughout the world 

ocean. The AO does not include an explicit representation of particles, which is to say that scavenging 

does not actually remove E from the dissolved phase. Instead, scavenging is built into the model by 

specifying that a certain portion of the dissolved pool can sink downwards into the underlying grid cells, 

in proportion to the inferred adsorbed concentration. This can be expressed with a distribution coefficient 

(K) where: 
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The amount of that element which sinks out of each box is determined by: 
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where revscav.w (m y-1) is the sinking rate of particles and h (m) is the height of that box. Similarly, the 

amount sinking into any box is given by the amount leaving the box above, adjusted to a concentration 

flux based on the box volumes. 

 While the model describes reversible scavenging using a fairly straightforward mathematical 

description, there are some quirks to be considered. First, because particle representation is implicit, there 

will be errors in the calculated dissolved and particulate concentrations. Crucially, these errors are 

insignificant when the fraction adsorbed is small and they grow larger as more E is adsorbed. For 

example, K=0.9 means that 90% of E within each box is available for scavenging and transfer to 

underlying boxes, but the model solution for E will report the concentration of the entire 

dissolved+particulate pool in the box, not just the 10% of E which one would expect to find remaining in 

the dissolved pool. For full accuracy, first-order processes which affect only the dissolved phase should 

be multiplied by (1-revscav.K), though for most elements the amount of adsorbed E is insignificant and 

the errors introduced by this formulation are similarly insignificant. Second, K values of greater than 1 are 

not disallowed in this model, meaning it is mathematically possible to transfer >100% of element E out of 

any box per year. The model will usually tolerate K>1, and will simply make up the difference in lost E 

by mixing, however such a parameter choice would violate common sense. Finally, it should be noted that 

the amount of E which sinks from a box depends on K⋅w so that, for example, a K of 0.1 with a sinking 

speed of 1000 m y-1 will produce the same model behavior as a K of 0.2 and a sinking speed of 500 m y-1. 

 This formulation is a slightly simplified version of the full reversible scavenging equations that 

were implemented in a model of hydrothermal iron dispersion using the OCIM (Roshan et al., 

“Hydrothermal iron is trapped in the deep ocean”, in review). 

 

revscavPOC is similar to revscav, except that scavenging is proportional to POC concentration, 

rather than being uniform throughout the ocean so that: 
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where revscavPOC.K is the ratio of sinking E to total E, as described in revscav. The caveats regarding 

K and w discussed for revscav also apply here. 

 

Appendix I, Section 2. Datasets included in the AO 



In order to make the model more easily usable, it comes pre-loaded with several datasets which have been 

fit to the AO grid by averaging all datapoints which occur within an AO grid cell. These include datasets 

based on model output, as well as some based on observations. These various datasets and model output 

are generally compatible. For example, the phosphate uptake rates for the AO (P_UP_WJ18) were 

determined using the same water transport as used by the AO (water_transport), while minimizing 

the misfit between AO model output phosphate (PO4_WJ18) and AO observed phosphate (WOAPO4). 

The files AEROSOLDEP, NEPHLOID, and HEFLUX contain the information needed to run the functions 

dust, hydrothermal, and nepheloid, respectively. Other files and folders are described below: 

 

GEOTRACES_2017_IDP is a folder containing many individual files with data from the GEOTRACES 

2017 Intermediate Data Product (Schlitzer et al., 2018). The data has been re-gridded onto the AO grid, 

where all data points within a grid cell were averaged together to produce the final concentration. This 

folder contains data for 79 parameters (of the total 470 parameters included in the 2017 IDP) including 

many of the most commonly studied dissolved trace metals. 

 

GLODAP is a folder containing data on global ocean alkalinity and DIC from the GLODAP data product 

(Lauvset et al., 2016; Olsen et al., 2016). GLODAP data is not currently used by any functions in the AO, 

but it is never the less included here so that it may be used in future work. 

 

WJ18 is a folder containing model output from a global nutrient cycling model. The particular model 

used for the AO is described in Weber and John et al. (2018), though similar models of nutrient cycling 

have been constructed for previous work. The model minimizes misfit between observed phosphate from 

the 2009 World Ocean Atlas and the model output phosphate (PO4_WJ18) (Fig. 9). Other concentrations 

reported from the model include dissolved organic phosphorous (DOP_WJ18) and particulate organic 

carbon (POC_WJ18), which is derived from particulate organic phosphorous assuming a 106:1 C:P ratio 

in sinking organic matter. Rates derived from the nutrient cycling model and included with the AO 

include the phosphorous uptake rate in the surface ocean (P_UP_WJ18) and the phosphorous 

remineralization rate in the deep ocean (P_REM_WJ18). 

  

WOA09 is a folder containing information about the properties of seawater worldwide based on a 

compilation of numerous datasets, often referred to as a ‘climatology’. Data is taken from the 2009 World 

Ocean Atlas (Levitus et al., 2010), averaged to produce an annual mean, and re-gridded for the AO. 

Datasets include nitrate (WOANO3), oxygen (WOAO2), phosphate (WOAPO4), salinity (WOASAL), silicate 

(WOASI), and temperature (WOATEMP). 

 

ao is a structure containing information about the AO grid, including information such as which grid 

cells contain ocean, the latitude and longitude of the grid cells, and masks for different ocean basins and 

GEOTRACES sections (Fig. 10). A full list of the ao parameters and a complete description of them is 

included as Appendix II. 

 

water_transport contains the ocean circulation transport matrix. The standard transport matrix is 

derived from the CTL version of the OCIM as described in DeVries (2014). While OCIM is built on a 

square grid, the circulation is not as simple as having each box exchange water with only the six 



neighbors sharing a face. The OCIM uses a hybrid upwind-centered scheme in the horizontal and a 3rd-

order semi-upwind scheme in the vertical, as well as diffusion which is rotated along and across 

isopycnals, so that many more distant grid cells are connected to each other in the transport operator than 

just the nearest neighbors (see Devries 2014 for details). The AO transport matrix is the same as was used 

to generate other model-derived parameters such as phosphate uptake rate in the surface ocean. 

 

AIII. Using the AO 

AIII.1 Running the AO 

 The AO can set up and run using the script setup_single. This script creates first creates a 

structure do, which tells the model what you would like it to do (a structure is a variable which can 

contain sub-variables). The do structure enables one or more biogeochemical processes in your model in 

the form do.function.var, where function is the name of a function which changes the A or b 

matrix to reflect a biogeochemical process stored in the srcsnk folder (e.g. bioredfield), and var 

is the variables needed to run that function (e.g. R, the Redfield ratio to apply). If you wish to run a 

function to enable biogeochemistry within your model, you must set do.function.on to a value of 1, 

in order to turn that functionality on. If you don’t wish to enable a function, you can either set 

do.function.on to 0, or simply don’t include any reference to that function in your do strutcture. If 

the user wishes write their own new biogeochemical functions, the function must be saved to the srcsnk 

folder, and the function can then be called from do in setup_single. 

 A graphical user interface (GUI) provides a simple way to begin exploring the AO without 

modifying any code at all. The GUI can be launched by running the script launchGUI, after which the 

user can select various processes to model, or can plot the output from earlier models in a variety of 

different ways. 

 

Appendix I, Section 3. Open-system and closed-system models 

 The AO can be used to create both ‘open system’ models, which include external sources and 

sinks of E to the ocean, and ‘closed system’ models which include only internal biogeochemical cycling 

and movement of your tracer. Before setting up a model, it is important to consider whether you are 

constructing an open or closed system model, and ensure that you have chosen an appropriate 

combination of processes to achieve mass balance. In many cases, it is possible to combine open-system 

and closed-system together in the model in a way which is mathematically solvable, but biogeochemically 

unrealistic. 

 Open-system models must include both a source and a sink of your tracer. Sources to the ocean 

are typically zero-order with respect to your tracer, which is to say that the magnitude of the source does 

not depend on the concentration of your tracer. For example, dust, hydrothermal, and nepheloid layer 

inputs are all parameterized to deliver a certain amount of your tracer to the ocean each year based on an 

input ratio compared to predetermined input fields. Of course, such a model must also include a sink by 

which the tracer is lost from the ocean. Zero-order sinks for removal of your tracer cannot be used, as 

they would result in an underdetermined model because there is no mechanism to set the global 

concentration of E in the ocean. Instead, removal of E from the ocean is typically accomplished by a sink 

which depends directly on the concentration of E, such as radioactive decay or biological uptake followed 

by burial of particulate material which reaches the ocean floor. In this way, both the global distribution of 

the tracer is determined, as well as the global mean ocean concentration. 



 Closed-system models represent only internal cycling of the tracer within the ocean. The first 

thing to know about closed-system models in the AO is that they cannot be solved as a true closed-

system. This is because a true closed-system model would contain an equal number of equations (one for 

each grid cell) and unknowns (the concentration in each grid cell) and would therefore be 

underdetermined. Another way to state this same problem is that there is a truly closed-system model can 

represent the redistribution of E throughout the ocean by processes such as biological uptake and 

remineralization and circulation, but this same redistribution could be achieved for any different total 

amount of E. Thus, closed-system models must be run with the conc function which sets the global mean 

ocean concentration by including very small sources and sinks of E. This approach has a direct analogy in 

the real ocean, which is that the ocean is not a truly closed system with respect to any element on 

geological timescales, instead its concentration is set by the balance of sources and sinks. However, the 

distribution of elements with a residence time in the oceans longer than the circulation timescale of the 

oceans (~1000 years) can be accurately modeled using closed-system processes, while the global mean 

concentration of an element in the oceans is set by the slow input and removal of elements on long 

timescales. For example, the distribution of a nutrient-type element in the ocean might be modeled using 

bioalpha to reflect the redistribution of E in the oceans by biological uptake and remineralization, 

while conc would have to be used to set the global mean ocean concentration. 

 

Appendix II. Description of parameters stored in the grid-describing structure ao. 

(Note that in all of the descriptions below, a ‘shoebox’ refers to a 3-dimensional rectangular array which 

is the size of the model grid (91x180x24)). 

nocn: 200160 The number of grid cells in the model with contain ocean. 

iocn: [200160×1 double] Indices of grid cells which contain ocean within the shoebox. 

OCN: [91×180×24 double] A shoebox with 1 where there is ocean and 0 where there is not. 

nanOCN: [91×180×24 double] A shoebox with 1 where there is ocean and NaN where there is not. 

EQNPOS: [91×180×24 double] A shoebox which contains the ‘equation position’ for each ocean cell. For 

example, ao.EQNPOS(50,100,2) is 15833, which is to say that when the linear algebra equations are 

written to describe the water flow and biogeochemical cycling with the model, the processes affecting the 

grid cell at position 50,100,2 in the shoebox are described in the 15833rd row and column of the A matrix, 

and the 15833rd row of the b matrix. 

nbtm: [10441 1] The number of grid cells which are at the bottom of the ocean. 

ibtm: [10441×1 double] Indices of the grid cells at the bottom of the ocean within the shoebox. 

BTM: [91×180×24 double] A shoebox with 1 for grid cells at the bottom of the ocean and 0 elsewhere.  

nanBTM: [91×180×24 double] A shoebox with 1 for grid cells at the bottom of the ocean and NaN 

elsewhere. 

SEAFLOOR: [91×180×24 double] A shoebox containing the fractional portion of the bottom face of the 

grid cell which contains seafloor based on ETOPO2 global bathymetry.. BTM describes the geometry of 

the model grid, and therefore has only one ‘bottom’ grid cell, in each column. However, in reality a 

continental slope might have bottom sediments which occur at many depths within any 2°x2° column, 

which is accounted floor by the high-resolution bathymetry described in SEAFLOOR.  

Seafloor: [200160×1 double] A list of the fractional portion of seafloor in every grid cell which 

contains ocean. 

nsurf: [10441 1]The number of grid cells which are at the surface of the ocean. 



isurf: [10441×1 double] Indices of the grid cells at the surface of the ocean within the shoebox. 

SURF: [91×180×24 double] A shoebox with 1 for grid cells at the surface of the ocean and 0 elsewhere.  

nanSURF: [91×180×24 double] A shoebox with 1 for grid cells at the surface of the ocean and NaN 

elsewhere.  

lat: [1×91 double] The latitudes of grid cells within the shoebox, from -89.011 to +89.011. 

Lat: [200160×1 double] A list of the latitudes of all 200160 grid cells which contain ocean.  

LAT: [91×180×24 double] A shoebox with the latitudes in each grid cell. 

lon: [1×180 double] The latitudes of grid cells within the shoebox, from 1 to 359. 

Lon: [200160×1 double] A list of the longitudes of all 200160 grid cells which contain ocean. 

LON: [91×180×24 double] A shoebox with the longitudes in each grid cell. 

depth: [1×24 double] The depths of grid cells within the shoebox, for all 24 depth levels. 

Depth: [200160×1 double] A list of the depths of all 200160 grid cells which contain ocean. 

DEPTH: [91×180×24 double] A shoebox with the depths in each grid cell. 

height: [1×24 double] The heights of grid cells within the shoebox, for all 24 depth levels. 

Height: [200160×1 double] A list of the heights of all 200160 grid cells which contain ocean. 

HEIGHT: [91×180×24 double] A shoebox with the heights in each grid cell. 

Vol: [200160×1 double] A list of the volumes of all 200160 grid cells which contain ocean. 

VOL: [91×180×24 double] A shoebox with the volumes in each grid cell.:  

ATL: [91×180×24 double] A shoebox with the ‘Atlantic mask’, containing 1 for every grid cell which 

contains Atlantic ocean. 

PAC: [91×180×24 double] A shoebox with the ‘Pacific mask’, containing 1 for every grid cell which 

contains Pacific ocean. 

IND: [91×180×24 double] A shoebox with the ‘Indian mask’, containing 1 for every grid cell which 

contains Indian ocean. 

ARC: [91×180×24 double] A shoebox with the ‘Arctic mask’, containing 1 for every grid cell which 

contains Arctic ocean. 

MED: [91×180×24 double] A shoebox with the ‘Mediterranean mask’, containing 1 for every grid cell 

which contains Mediterranean ocean. 

GTmasks: [1×1 struct] A structure containing masks for many GEOTRACES sections. In most cases, 

GEOTRACES stations are spaced further apart than the distance between grid cells, and typically 

GEOTRACES profiles do not have enough vertical resolution to fill in values for each grid cell vertically. 

In order to create continuous sections, the masks are therefore filled in vertically to include all depths at 

which there is ocean, and grid cells are filled in horizontally to create complete unbroken sections. 
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Figure 1. The AWESOME OCIM uses a model grid with 2° latitude by 2° longitude 

boxes, and 24 vertical levels which are more closely spaced towards the surface ocean. 

The horizontal section is shown at 201° longitude, as indicated by the red line. 

 

 

 

  



 
 

 

Figure 2. Various processes are described for a simple 4-box model of the ocean. For 

each process we show both an illustration of how this process moves tracers within the 

ocean, along with the corresponding A and b matrices which would be used to build a 

linear-algebra version of the model. 

  



 

 

Figure 3. Observations of Fe concentrations from the GEOTRACES GP15 transect in 
the Eastern Tropical South Pacific (a) can be compared to a simple model with input 
of a tracer from nepheloid layers and loss with a half-life of 50 years (b). The large 
differences between Fe distribution and tracer distribution quickly demonstrate that 
non-reductive dissolution from nepheloid is unlikely to explain the plume of Fe 
observed in the Eastern basin near Peru. Both the model run and plotting were 
performed using the GUI. 
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Figure 4. Boundary conditions of Fe concentration were imposed along the GA03 

transect in the North Atlantic Ocean and the GA10 transect in the South Atlantic (black 

arrows), enclosing a region in the tropical and equatorial Atlantic which was transected 

by the GA02 cruise (red line) (a). A model which includes these boundary conditions, 

but no other biogeochemical processes shows the concentrations of Fe which would be 

circulated to the GA02 transect in the absence of any other sources or sinks (b). This 

model output can be compared to observed Fe concentrations along the GA02 transect 

in order to identify regions of input and loss (c). Figures were produced using the GUI.   

  



 
Figure 5. A section through the Pacific Ocean at 179° for a tracer with a -5 ‰ isotope 

effect for biological uptake. This is similar to a nitrate isotope model, showing 

enrichment in the heavy isotopes in the upper ocean and oligotrophic gyres, except that 

it does not include isotopic fractionation with other important processes such as nitrogen 

fixation and denitrification. 
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Figure 6. The deposition of various different types of aerosols to the surface ocean. For 

the mineral dust, seasalt, and primary biogenic sources of aerosols, the mass of the 

aerosols is the total mass.  For the fire, fossil fuel and biofuel aerosols, this represents 

the black carbon contribution from these sources, and for volcanic aerosols the mass is 

the sulfur contribution. 
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Figure 7. Hydrothermal vent helium flux (a) is determined from rates of seafloor 

spreading, modified regionally based on observations of ocean dissolved helium 

concentrations (Holzer et al., 2017). The input of a tracer with 3He will be proportional to 

the 3He flux, divided by the volume of the grid cell into which the hydrothermal venting 

occurs, to account for the fact that a similar input will be more dilute when injected into 

larger grid cells (b). 

  



Figure 8. The intensity of nepheloid layers can be modeled in two ways. Input of tracers 

can be scaled to a global compilation of particle maximum concentration observations 

interpolated onto the AO grid (a). Alternatively, input can be scaled to satellite 

observations of surface eddy kinetic energy (EKE; b). These datasets are converted to 

input fluxes by dividing the total particle quantity or EKE energy by the volume of the 

bottom box where input occurs (c, d). 
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Figure 9. The model concentration of phosphate in the surface ocean, from a model 

which seeks to match global phosphate distributions with an OCIM circulation (a; 

PO4_WJ18). This model also calculates the phosphate uptake rate for each grid cell in 

the surface ocean, with highest uptake rates generally occurring at temperate latitudes 

(roughly 35° to 65°), where nutrient concentrations are high and there is enough light to 

sustain significant biological production (b; P_UP_WJ18). 

  



 

 
 

 

Figure 10. A simplified 4-box model illustrates various parameters stored in the Matlab 

structure ‘ao’, each of which provides different information about the AO grid. 
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